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Shell model for drag reduction with polymer additives in homogeneous turbulence
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Recent direct numerical simulations of the finite-extensibility nonlinear elastic dumbbell model with the
Peterlin approximation of non-Newtonian hydrodynamics revealed that the phenomenon of drag reduction by
polymer additives exists~albeit in reduced form! also in homogeneous turbulence. We use here a simple shell
model for homogeneous viscoelastic flows, which recaptures the essential observations of the full simulations.
The simplicity of the shell model allows us to offer a transparent explanation of the main observations. It is
shown that the mechanism for drag reduction operates mainly on large scales. Understanding the mechanism
allows us to predict how the amount of drag reduction depends on the various parameters in the model. The
main conclusion is that drag reduction is not a universal phenomenon; it peaks in a window of parameters such
as the Reynolds number and the relaxation rate of the polymer.
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I. INTRODUCTION

The phenomenon of drag reduction by polymer additiv
is usually studied in channels or pipes, where the bound
conditions and the effects of the walls are very import
@1–4#. Until recently, it was not known whether drag redu
tion could be achieved also in homogeneous flows; this qu
tion has been answered recently in the affirmative, via dir
numerical simulations~DNS! of the finite-extensibility non-
linear elastic dumbbell model with the Peterlin approxim
tion ~FENE-P! equations@5,6# in homogeneous condition
~i.e., in a box with periodic boundary conditions! @7#. The
FENE-P takes into account the effect of the polymers on
Newtonian fluid by introducing the conformation tensorR of
the polymers into the fluid stress tensor@8#. The FENE-P
equations are known to model well the effects of polym
on the hydrodynamic flows, and DNS of these equations
channel geometry recaptured very well the characteristic
drag reduction in experimental channel turbulence@4,9#. The
observation of drag reduction in homogeneous conditions
fers an opportunity to investigate the phenomenon indep
dent of boundary layers and wall effects. Nevertheless,
FENE-P equations are relatively cumbersome to ana
without the help of DNS. The aim of this paper is to intr
duce a shell model of the homogeneous FENE-P equati
We will demonstrate that the shell model recaptures the m
findings of the homogeneous DNS, and that these findi
are understandable analytically, taking advantage of the r
tive simplicity of the shell model. To derive the shell mod
for drag reduction we make use of a formal analogy betw
the FENE-P equations for viscoelastic flows and magneto
drodynamics~MHD! @10#. It had been pointed out that if w
form a tensorRi , j from the direct product of the magnet
field Bi , i.e., Ri , j[BiBj , then the nonlinear couplings o
MHD lead to equations for the tensorR whose nonlinear
terms are equivalent to those of FENE-P, up to terms
remove the dynamo effect. This analogy is revisited and
1063-651X/2003/68~1!/016308~10!/$20.00 68 0163
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ploited in Sec. II. The shell model for viscoelastic flow
introduced and discussed in Sec. III. In Sec. IV, we pres
numerical simulations of the shell model and demonstr
the existence of drag reduction. In Sec. V, we present
mechanism of drag reduction. This is the central section
this paper. We show that drag reduction is not a univer
phenomenon. Rather, it depends on parameters such a
Reynolds number and the relaxation time of the polym
The amount of drag reduction peaks in a window of the
parameters. In Sec. VI, we demonstrate that understan
the mechanism provides us with a predictive power that
can test against numerical simulations. We conclude in S
VII by observing that precisely because drag reduction is
a universal phenomenon it can be manipulated by optimiz
parameters.

II. THE FENE-P EQUATIONS AND THEIR RELATION
TO MHD

The addition of a dilute polymer to a Newtonian flu
gives rise to an extra stress tensorT (r,t) which affects the
Navier-Stokes equations@5,6#

]u

]t
1~u•“ !u52“p1ns“

2u1“•T,

“•u50. ~1!

Here, u(r,t) is the solenoidal velocity field,p(r,t) is the
pressure, andns is the viscosity of the neat fluid. In the
FENE-P, the additional stress tensorT is determined by the
‘‘polymer conformation tensor’’R according to

T ~r,t !5
np

t F f ~r,t !

r0
2

R~r,t !21G ; ~2!
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Here1 is the unit tensor,np is a viscosity parameter,t is a
relaxation time for the polymer conformation tensor, andr0
is a parameter which in the derivation of the model stands
the rms extension of the polymers in equilibrium. The fun
tion f (r,t) limits the growth of the trace ofR to a maximum
valuerm:

f ~r,t ![
rm

2 2r0
2

rm
2 2Rgg~r,t !

. ~3!

The model is closed by the equation of motion for the co
formation tensor which reads

]Rab

]t
1~u•“ !Rab5

]ua

]r g
Rgb1Rag

]ug

]r b

2
1

t
@ f ~r,t !Rab2r0

2dab#. ~4!

This model was simulated by DNS in channel flow turb
lence, showing a qualitative and quantitative agreement w
laboratory experiments on drag reduction. Recently, the s
model has been used to understand whether or not dra
duction is observed in homogeneous and isotropic condit
@7#. In homogeneous and isotropic turbulence, drag reduc
can be determined by computing the ratio

D5
eL

E3/2
, ~5!

whereE is the kinetic energy,e is the total rate of energy
dissipation, andL is the scale of the external forcing. Th
above expression of drag reduction can be easily reduce
the so called skin friction factor for turbulent channel flow
The numerical simulation of homogeneous and isotropic
bulence were performed in a cube with periodic bound
conditions. The external forcing was applied with rando
phase in order to ensure isotropy and homogeneity. The
merical simulations were performed for the Navier-Stok
equations and the FENE-P for thesameexternal forcing.
Both the total energy dissipation and the kinetic energy
creased for the FENE-P as compared to the Newtonian c
A direct computation ofD shows that there is a drag redu
tion of about 20%, i.e., roughly of the same order as w
had been observed in the turbulent channel flow. Also
homogeneous and isotropic turbulence, the Taylor micros
appeared to increase, precisely as much as the buffer la
increases in channel flows@1#. This is an interesting resul
because it shows us that the effect of boundary condition
not crucial for drag reduction, at least from a physical po
of view. Nevertheless, it is still difficult to understand fro
numerical simulations, even in the homogeneous and iso
pic case, that what is the physical mechanism that is resp
sible for drag reduction. The increase of the Taylor micr
cale is certainly not enough to explain quantitatively t
increase of the kinetic energy, as somehow previously s
gested in the literature@1,11#.

Having understood that the homogeneous simulations
hibit drag reduction, we would like to propose a mechani
01630
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for it. Rather than doing it directly with the FENE-P, w
would present first a simplified model. We have alrea
shown before that drag reduction appears in simplified m
els such as the Burgers equation@12#. Here, we derive a shel
model for the FENE-P equations. The advantage of the s
model is that it is much more tractable analytically than t
full FENE-P equations. We will present the model, demo
strate explicitly that it exhibits drag reduction in much th
same way as the FENE-P equations, and finally offer a
ferent mechanism to understand the phenomenon.

III. THE SHELL MODEL

To derive a shell model of the homogeneous FENE
equations~without boundaries! we proceed in two steps
First, we recall a recent remark@10# that the FENE-P equa
tions can be recaptured almost entirely by taking the con
mation tensor to be a diadic direct product of a vectorB, i.e.,
Ri j [BiBj . In terms of this vector, the equations read

]u

]t
1~u•“ !u52“p1B•~“B!1ns“

2u,

“•u50,

]B

]t
1~u•“ !B52

B

t
1B•~“u!,

“•B50. ~6!

These equations are identical to the FENE-P up to the
plicit appearance of the functionf (r,t). The learned reade
of course recognizes that fort→` these equations are iso
morphous to MHD. We can therefore write immediately,
inspection, a shell model for FENE-P by using the well stu
ied shell model for the MHD@13,14#, including the relax-
ation term for finitet. We denote the velocity field byu and
the ‘‘polymer ’’ field by B. The dynamical variable of the
shell model are the field at wave vectorkn , denoted, respec
tively, as un[u(kn) and Bn[B(kn). The shell model re-
stricts attention to wavevectorskn5k0ln, where typically in
numerical simulationsl52.

In order to derive the shell model equation, we consid
the following nonlinear operator:

Fn~u,B!5b1knun12Bn11* 2b1kn21un11Bn21*

1c1knun11* Bn121c1kn22un21Bn22

1bckn21Bn11un21* 1bckn22un22Bn21 , ~7!

whereb1512b; c1511c; bc5b1c; and21<b<0 and
c511b are the usual parameters defined in the Sa
model.

In terms of the nonlinear operatorF, the Sabra shell
model of turbulence@15# can be written as

dun

dt
5

i

3
Fn~u,u!2nkn

2un1 f n , ~8!
8-2
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SHELL MODEL FOR DRAG REDUCTION WITH POLYMER . . . PHYSICAL REVIEW E 68, 016308 ~2003!
wheref n is an external forcing andn the kinematic viscosity
of the model. Let us remark that the following relation c
be proved:

i(
n

Fn~u,B!Bn* 2 i(
n

Fn* ~u,B!Bn50. ~9!

Using the nonlinear operatorF, it is possible to model Eqs
~6! in the framework of shell models, namely,

dun

dt
5

i

3
Fn~u,u!2

i

3
Fn~B,B!2nkn

2u1 f n ,

dBn

dt
5

i

3
Fn~u,B!2

i

3
Fn~B,u!2

1

t
Bn . ~10!

Equation~9! shows us that the generalized energyE,

E5Eu1EB ,

Eu[(
n

unun* , EB[(
n

BnBn* ~11!

is conserved in the inviscid limit, i.e., fort→` andn→0.
We will refer to this model as the Sabra-P model. Besid

the generalized energyE, the model conserves the ‘‘cros
helicity’’ in the inviscid limit

K5(
n

Re~un* Bn!. ~12!

In MHD one needs to worry about the existence of
dynamo effect, i.e., an unbounded increase in the magn
field. In our case, the term that models the polymer rel
ation time2Bn /t will be responsible for guaranteeing st
tionary statistics without dynamo. In addition to the cons
vation laws, the equations of motion remain invariant to
phase transformations un→unexp(ifn) and Bn
→Bnexp(icn). The conditions are

fn1fn112fn1250, ~13!

fn1cn112cn1250, ~14!

cn1fn112cn1250, ~15!

cn1cn112fn1250. ~16!

This implies cn5fn ; n. As a result of the phase con
straints, there exist in this model only few nonzero corre
tion functions. The only second-order quantities are^uunu2&
and ^uBnu2&. The only third-order quanitites are of the for
Im^bn21bnbn11* &, whereb can beu or B.

IV. NUMERICAL INVESTIGATION OF THE SHELL
MODEL: DRAG REDUCTION

In this section we compare the solutions of the sh
model ~10! to the usual Sabra shell model for the corr
sponding Newtonian flow. The Sabra model~8! is obtained
01630
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from Eqs.~10! in the limit t→0. Alternatively, we can get
the Sabra dynamics by simply taking as initial conditio
Bn50.

To have a meaningful comparison we always drive
two models with a constant power input. In other words,
choose

f 15
Fa

u1*
, f 25

Fb

u2*
, f n50 for n>2, ~17!

with Fa5Fb51023(212i ). Since the power input is the
same, drag reduction is exhibited in Eqs.~10! if the kinetic
energy of the flow increases. The latter is simply^Eu&. We
will investigate the existence of drag reduction, its depe
dence on parameters, the question of the dissipative s
and the dynamical signatures of drag reduction.

A. Drag reduction and its dependence on parameters

We have numerically investigated the behavior of t
Sabra-P model for different values oft andn. In Figs. 1–3
we show^Eu& for three values of viscosity and for differen
values oft. For concreteness, we have fixed the model
rameterb as 20.4 in all the simulations. In all the figures
the constant line corresponds to the value of the kinetic
ergy computed for the Sabra model without coupling toBn .
By inspecting the three figures, one can safely state that
Sabra-P model shows drag reduction. In particular, for
cases, there is an optimal choice oft for which the effect of
drag reduction is maximal. Fort→0 andt→`, drag reduc-
tion decreases and eventually we enter a region of par
eters where we observe drag enhancement. Moreover
fixed value oft and decreasing values ofn, drag reduction
decreases, reaching a mere few percent forn51028.

B. Which scales are responsible for drag reduction?

To understand that which scales are responsible for
drag reduction, we comparêuunu2& for both models withn

FIG. 1. Kinetic energy of the Sabra-P model forn51025 as a
function oft. The constant reference line corresponds to the kin
energy computed for the Sabra model without polymer.
8-3
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51025, again at the same power input. This is shown in F
4. This figure shows us an interesting and important poin
is clear that the drag reduction is due to the relative incre
in ^uunu2& for small values of n, and that this occurs at th
expense of a relative decrease in^uunu2& for high values ofn.
This finding is in close correspondence with similar conc
sions obtained for the FENE-P, both in homogeneous
channel flows@16#.

C. The dissipative scale

In some theories of drag reduction, it was proposed t
the dissipative scale is increased in the viscoelastic flow,
that somehow this is responsible for the phenome
@1,11,17#. To test this possibility we plot in Fig. 5 the quan
tity ^kn

2uunu2& as a function ofn. This quantity peaks at the
dissipative scale, i.e., the Kolmogorov scale. Inspecting F
5 shows us that the dissipative scale has not changed a

FIG. 2. Kinetic energy of the Sabra-P model forn51026 as a
function oft. The constant reference line corresponds to the kin
energy computed for the Sabra model without polymer.

FIG. 3. Kinetic energy of the Sabra-P model with polymer f
n51028 as a function oft. The constant reference line correspon
to the kinetic energy computed for the Sabra model without po
mer.
01630
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between the Sabra and the Sabra-P models, even thoug
latter certainly exhibits drag reduction. Thus, as indica
before, drag reduction should be understood as a phen
enon of the energy containing scales rather than the diss
tive scales.

D. Dynamical signature of drag reduction

The similarity between the FENE-P and its shell ana
transcends statistical quantities. To observe the close
namical similarity it is instructive to consider the quantity

P5 iSnun* Fn~B,B!2 iSnunFn* ~B,B!, ~18!

which describes the exchange between the kinetic energEu
and the polymer or elastic energyEB . In Fig. 6 we show a
time series ofP for n51025. P is always negative; the

ic

-

FIG. 4. A double logarithmic~to base 2! comparison of the
average energy shell by shell for the Sabra~dotted line with circles!
and the Sabra-P~continuous line with squares! models. Drag reduc-
tion seen is the relative increase in energy for small values ofn on
the expense of large values ofn.

FIG. 5. Energy dissipation displayed in double logaritmic p
for each shell for the Sabra model~dotted line with circles! and for
the Sabra-P model~continuous line with squares!.
8-4
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effect of the polymers is to drain energy from the kine
energy. Moreover, the dynamics ofP is strongly intermit-
tent, which is a feature already observed in the DNS of
FENE-P. The numerical simulations indicate the conclus
that the model used in this paper shows drag reduction
way qualitatively close to the observed behavior of t
FENE-P@9#.

We note in passing that it is not the first time that sh
models seem to reproduce many of the features of turbu
flows; it is gratifying however that we can present a simi
success even when we include relatively nontrivial effe
induced by polymer dynamics.

V. MECHANISM FOR DRAG REDUCTION

This is the central section of this paper, in which we p
pose a detailed mechanism for drag reduction in the pre
model. We begin by analyzing the necessary conditions
drag reduction.

A. Necessary condition for drag reduction

To derive a necessary condition for drag reduction, let
consider the equation for the total energy, which reads

dE/dt5(
n

F1

2
~ f nun* 1 f n* un!2nkn

2unun* 2
1

t
BnBn* G .

~19!

At steady state, with power input maintained constant aP,
we have

P5SnFnkn
2unun* 1

1

t
BnBn* G . ~20!

All the terms on the right-hand side~RHS! are strictly posi-
tive. Since the energy inputP is constant for the Sabra an
the Sabra-P~SP! models, we get

Snkn
2@~unun* !S2~unun* !SP#.0. ~21!

On the other hand, if the SP model is to be drag reducing,
must have

FIG. 6. Time behavior of the quantityP as defined in the text
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Sn@~unun* !S2~unun* !SP#,0. ~22!

The only way Eqs.~21! and~22! can hold simultaneously is
if for small kn , uunuSP.uunuS , and sufficiently larger to com-
pensate for the fact that at largekn , uunuSP,uunuS . This
means that the kinetic energy plotted versusk has to display
an increased slopeat least somewherefor drag reduction to
take place. We have seen this already in Fig. 4. We show
important phenomenon once more in a log-log plot in Fig.
in which also theBn-spectrum is shown for future referenc
We see very clearly the crossing that occurs between theun
spectrum of the Sabra-P model and the Sabra counter
which is the necessary condition for drag reduction. N
that the increase in slope is a necessary but not a suffic
condition for drag reduction. We may increase the slope
not enough to cross the Sabra spectrum, or cross but no
enough to compensate for the reduced kinetic energy at l
k.

B. Typical scales related to the polymer

A discussion of the mechanism of drag reduction calls
pointing out the existence of two typical scales that we
already introduced in the past in the literature on drag red
tion. The first is the Lumley scalekc , which is defined by the
relaxation time of the polymer being of the same order as
eddy turnover time. For our model this scale satisfies

u~kc!kc;t21. ~23!

Note that by definition this scale is Reynolds number ind
pendent.

The other scale, which we refer to as the de Gennes s
kg , is where the kinetic energy on the scalekg is of the same
order as the elastic energy:

u2~kg!;B2~kg!. ~24!

FIG. 7. Double logarithmic plot~to base 2! of the energy spec-
trum of the Sabra-P model~continuous line with squares! and the
Sabra model~continuous line with circles! for n51026. The con-
tinuous line with black triangles represents the energy spectrum
the B field.
8-5
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In fact, in the Sabra-P model the scales so defined appe
be very close, if not identical to each other. In particular,
will show presently that alsokg is Reynolds number inde
pendent. To demonstrate the equivalence of the two sc
we first exhibit in Fig. 8 the numerical estimate ofkc . The
physical significance ofkc is not in the accidental identity o
the two time scales, but rather that fork vectors smaller than
kc the effect of theBn field on the energy flux is negligible
but not so fork vectors larger thankc . To see this, introduce
the quantities related to the energy flux in the Sabra-P mo
namely,

Sn5^Im~un21* un* un11!&, ~25!

Tn5^Im~Bn21* un* Bn11!&. ~26!

The physical meaning of the two quantities is rather cle
knSn is proportional to the flux of the kinetic energy from
large scale to small scales due to nonlinear terms, whileknTn
is proportional to the flux of kinetic energy to the polym
field. We expect that forkn nearkc , the effect ofTn cannot
be neglected in the dynamics, i.e., the average energy flux
the velocity field

knGn5kn~Sn2Tn! ~27!

begins to change with respect to what it is observed in
Sabra model.

In Fig. 9 we show the quantityGn computed for the same
model parameters of Fig. 8. The symbols refer to the Sa
model, while the continuous line corresponds to the Sab
model. In the vicinity ofnc;5.5, the two models show
different behavior and, in particular, the Sabra-P mo
shows a decrease of the total energy fluxknGn , as previ-
ously claimed.

Regarding the scalekg , it can be read from the spectrum
shown in Fig. 7, in whichn51026. In Fig. 10 we show the
analogous spectra forn51028. Clearly,kg did not change at

FIG. 8. Double logarithmic plot~to base 2! of the inverse of the
‘‘eddy turnover time’’A^En&kn as a function ofkn ~continuous line
with squares!. The constant reference dotted line ist21. The cross-
ing in inertial range identifiedkc . In this figure,n51025, t50.4.
01630
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all, in agreement with our assertion that it is Reynolds ind
pendent. Finally, we note that in all the figures shown,kc and
kg are of the same order of magnitude, and in the seque
do not distinguish between the two.

C. The effect of the polymer at largek-vectors

In this section and the following one, we discuss the eff
of the Bn field on theun field for k vectors much larger and
much smaller thankc . We will show that the spectrum
^uunu2& exhibits essentially the same scaling exponent as
Sabra model, but theamplitudeis affected by the presence o
the Bn field. This will be an important factor in the mecha
nism of drag reduction. Begin withkn large,kn@kc . In this
regime, the effect of the relaxation timet on the dynamics of
the Bn field is completely negligible. The dynamics ofBn is
dominated by its coupling toun , simply becauseunkn
@t21. But then in this regime the dynamics is like the o
of MHD, which had been analyzed in detail in Ref.@14#. The

FIG. 9. Double logarithmic plot~to base 2! of Gn computed for
the Sabra-P model~continuous line with squares! and the Sabra
model ~dotted lines with circles!.

FIG. 10. Double logarithmic plot~to base 2! of the energy spec-
trum of the Sabra-P model~continuous line with squares!. The line
with black triangles represents the energy spectrum of theB field.
8-6
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central conclusion of that analysis is that up to intermitten
corrections, the spectra of bothBn and un fields exhibit a
scaling exponentz252/3. Indeed, inspecting Fig. 10, we se
that for largekn the two spectra have similar slopes, althou
intermittency affects the two spectra in different ways.

On the other hand, the amplitudes of the two spectra n
not be the same. The relative displacement of the two po
laws is determined by numerical details in the model.
estimate this displacement we will estimate the amplitude
the two spectra at the dissipative scale. The contribution
the dissipation ofu is mainly from the small scales, i.e., ver
large values ofkn . We can define an effective scalekd , the
scale at which energy dissipation peaks:

( kn
2^uunu2&;kd

2^uudu2&, ~28!

whereud5u(kd) andkd is of the order of the Kolmogorov
scale. Since we found that the dissipative scale ha
changes when we add the coupling to theBn field, we can
deduce from Eq.~20! that

^uudu2&SP2^uudu2&S'(
n

^uBnu2&
nt

. ~29!

On the other hand, the sum on the RHS of Eq.~29! is a
geometric sum dominated by the contribution ofB(kc),
whereBn is maximal. We thus estimate the relative displac
ment of the two spectra at high values ofkn by

^uudu2&SP2^uudu2&S'
^uB~kc!u2&

nt
. ~30!

Thus to the first approximation, we expect the slopes of
two spectra to remain unchanged, maintained at a cons
difference from each other as given by Eq.~30!, until kn
approacheskc from above, where the effect of the relaxatio
time t on the dynamics ofBn cannot be neglected.

D. The effect of the polymer at smallk vectors

Next, we discuss the slope of theun spectrum forkn
!kc . This is very easy, since the amplitude ofBn is very
small due to the very efficient exponential damping byt.
Thus, theun field hardly experiences the coupling toBn , and
its slope, up to intermittency corrections, is again of the
der ofz252/3. Again, the amplitude is changed compared
the pure Sabra case, and this is the most important fea
that is discussed next.

E. The tilt in the spectrum at knÉkc

Considering the spectrum in Fig. 10 we note that theBn
spectrum increases rapidly whenkn→kc from the left. To
understand this phenomenon consider the equation of mo
for Bn at steady state. To leading order
01630
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05 K U dBn

dt U L ;^uc1knun11* Bn12u&2
^uBnu&

t
, ~31!

where we have neglected terms of the order ofBn11, but
including them will lead to similar conclusions. Using th
fact that ukn11un11* tu!1, and since ukn11un11* Bn12u
<ukn11un11* uuBn12u we immediately conclude that

^uBnu&!^uBn12u&. ~32!

We continue this argument recursively to estimate the larg
polymer contributionB(kc) as

^uB~kc!u&;
^uB0u&

^uk1u1u&^uk3u3u&•••^ukc21uc21u&tnc/2
,

~33!

wherelnc5kc .
In the vicinity of the scalekc , we have, to leading orde

in B, in the kinetic energy equation,

052knSn112bknSn1~11b!kn22Sn21

2kn^un* Bn11* Bn12&. ~34!

When the amplitude of the polymer goes to zero (Bn
→0 ; n) the only solution is the well known scaling law
Sn}kn

21 . However, the last term in Eq.~34! forces now a tilt
in the spectrum. Its sign is exactly such thatSn21 has to
increase compared toSn andSn11, respectively. Of course
for kn!kc the effect of theBn field on theu spectrum is
again negligible and therefore, the spectral slope will se
back to the Sabra value. However if the tilt in the vicinity
kc results in crossing the Sabra spectrum, we would hav
whole spectral range where the energy is higher.

We therefore conclude that the existence of drag reduc
depends rather heavily on the sign of the energy transfe
scales close tokc . To check the sign directly in the numeric
and thus to substantiate the existence of the tilt, we retur
the equations of motion and write

d

dt
uunu25C1

(n)~u,u,u!2C2
(n)~u,B,B!2nkn

2uunu2,

d

dt
uBnu25C3

(n)~u,B,B!1C2
(n)~u,B,B!2

1

t
uBnu2, ~35!

where the termC1
(n)(u,u,u) represents the kinetic energ

flux of the field, whileC2
(n)(u,B,B) is the energy flux going

from the velocity field to the polymer field. Finally, term
C3

(n)(u,B,B) is the flux of energy of the polymer field due t
the transport of the velocity field. Figure 11 showsC1

(n) ,
2C2

(n) , andC3
(n) for t50.4 andn5106, the same param

eters of Fig. 7. It is important to observe thatC1
(n) becomes

positive for n.nc . For a givenn, the termC1
(n) can be

written asC1
(n)5Ln2Sn , whereLn is the amount of energy

flux given from the large scale to scalekn and Sn is the
amount of energy flux given from scalekn to smaller scales.
It follows that when the energy flux is constant,Ln5Sn and,
therefore,C1

(n)(n)50. On the other hand, a positive value
C1

(n)(n) implies thatLn.Sn . This is exactly what is shown
in Fig. 11. The imbalance of the energy fluxC1

(n) is compen-
8-7



he
t

in
he
in
x
it
oe
fe
, l
y

e
s
tio
e
ilit
-

ia

e
th
ne
i-
is
u
el
he

c-
g
o

ose
rgy

ki-
an-
-
gly

l
he
ale,
ra-P
end
les

ou

s

BENZI et al. PHYSICAL REVIEW E 68, 016308 ~2003!
sated by the flux of energy fromun to Bn , given by the term
2C2

(n) . It is interesting to observe that the last term in t
balance equation, namely,C3

(n) is rather small, i.e., the effec
of an energy cascade of the polymer is rather weak.

F. Discussion

While we have been able so far to describe a convinc
scenario for drag reduction, we still should explain t
mechanism for the increase of the large scale energy. S
the fieldBn is negligible for smalln, the average energy flu
per unit time at smalln must equal the input work per un
time at the largest scales. However, the energy flux d
show time and scale fluctuations which could behave dif
ently for the Sabra and Sabra-P models. More specifically
us consider the quantityGn defined in Sec. V B. As alread
discussed,Gn represents the energy flux at scalekn due to
both the nonlinear terms in the velocity fieldand the nonlin-
ear term in theBn field. In terms ofGn , we can build a large
scale energy fluxWL5G21G31G4 which represents the
full amount of energy flux across the largest scales, nam
acrossk vectorskn,kc , for which the average energy flux i
invariant to the changing of Sabra to Sabra-P. The defini
of WL is such thatWL.0 means an energy flux from larg
scales to small scales. In Fig. 12, we show the probab
distribution of WL for both models, with numerical param
eters n51025 and t50.4. The vertical line in the figure
indicates the average value, which, as expected, is invar
As one can observe, the two probability distributions show
substantial difference fornegative values of WL : in the
Sabra-P model, one can have larger and more frequent n
tive values of the energy flux. This can happen even if
instantaneous value of the total energy per unit time obtai
by the polymer field from the velocity field is always pos
tive. Qualitatively, this means that while the velocity field
always forcing the polymer field, at very large scales the fl
can, from time to time, be reversed, and the polymer fi
forces the velocity there. This is how the amplitude of t
energy spectrum is being increased on an average.

FIG. 11. Energy fluxes for the Sabra-P model. The continu
line corresponds to the fluxes of the kinetic energyC1

(n) . The
squares correspond to2C2

(n) . The dashed line with black triangle
is C3

(n) .
01630
g

ce

s
r-
et

ly,

n

y

nt.
a

ga-
e
d

x
d

Clearly, this mechanism could not work unless the ‘‘for
ing’’ by the polymer field acted in phase with the growin
kinetic energy. In order to clarify this further, we present tw
time-series of the kinetic energy andWL , in Fig. 13 for the
Sabra model and in Fig. 14 for the Sabra-P model. A cl
inspection of the figures shows that the reverse of the ene
flux WL occurs exactly during the growing phase of the
netic energy, leading therefore to a larger value of the inst
taneous kinetic energy. Thisin phasemechanism is respon
sible for drag reduction. Note that this mechanism stron
depends on the large scale dynamics and the value ofkc . For
kn larger thankc , no significant difference in the statistica
behavior of the energy flux is observed. However, t
amount of energy forcing, due to the polymer at large sc
can depend on the Reynolds number, at least in the Sab
model. If this is the case, then drag reduction should dep
on the Reynolds number only through the two relevant sca
appearing in the systems, namely,kc andlT , the latter being
the Taylor microscale

lT[A Eu

(
n

kn
2uunu2

, ~36!

s FIG. 12. Probability distribution functions ofWL for the Sabra
model the~line with black triangles! and Sabra-P model~continuous
line!.

FIG. 13. Time series of the kinetic energy~continuous line! and
2WL ~dotted line! for the Sabra model.
8-8
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which also depends ont in the Sabra-P model. Because t
drag is a dimensionless quantity, we argue that the only w
in which the Reynolds number may appear in the drag
duction is by means of the dimensionless quantitym
5kclT(t).

There is a simple argument, proposed in the followi
section, which explains why at large Reynolds numbers
may observe the same qualitative mechanism, i.e. drag
duction, with smaller effects on the kinetic energy. As a m
ter of fact, the numerical results show that drag reduct
reaches its maximum form;1

VI. PREDICTIONS OF THE THEORETICAL MECHANISM

We summarize the mechanism of drag reduction using
diagram shown in Fig. 15. The tilt in the spectrum occurs
the vicinity of kc , with the asymptotic slope forkn!kc and
kn@kc remaining essentially unchanged. With such a sp
trum, the two inequalities~21! and ~22! are obviously
obeyed.

FIG. 14. Time series of the kinetic energy~continuous line! and
2WL ~dotted line! for the Sabra-P model.

FIG. 15. Double-logarithmic schematic of the effect of polyme
in the drag reduction on the turbulence energy spectrum. Do
line: neat fluid. Solid line: polymeric solution. The spectral slope
unchanged for large and small scales, while at scalekc there is a
significant upward tilt.
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The difference in the spectra forkn@kc is determined
predominantly by Eq.~29!. This equation predicts that thi
difference will be greatly increased when the Reynolds nu
ber is increased~i.e., whenn→0), see Fig. 16. Of course, i
this happens we can lose the whole effect of the drag red
tion, since the amount of tilt atkc is basically independent o
n. We need to maintain the spectral difference small eno
for the tilt to effect a crossing of the spectrum of Sabra-P a
Sabra. Also, the position ofkc is important. If we reducekc
~i.e., increaset) the tilt is too far to the left and therefore
will fail to increase the energy. In fact, it can be drag enha
ing. The combined effect of decreasingn and increasingt is
shown in Fig. 16. Needless to say, also if we decreaset too
much we may lose drag reduction since the tilt will b
pushed to the irrelevant dissipative range where no ene
containing modes exist. Also, ift becomes too low,Bn be-
comes smaller, and the amount of tilt is decreased, as ca
seen directly from Eq.~34!. Although decreasing the fieldBn
brings the spectra closer together in the largekn regime, the
tilt may not suffice to reduce the drag. Such a situation
shown schematically in Fig. 17. Actually, using the langua
introduced in the preceding section and the above disc

d

FIG. 16. Double logarithmic schematic of the turbulence ene
spectrum when the polymer relaxation time scale is too slow,
the Reynolds number is too large.

FIG. 17. The relaxation timet is to low.
8-9
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sions, we are able to give another argument to unders
how drag reduction could depend on the Reynolds num
As previously mentioned, the relevant dimensionless num
in the system ism5kclT . If t→` thenkc→0 and we know
that drag reduction must be inhibited. It follows that form
→0 we cannot observe drag reduction. For fixedkc and
increasing Reynolds number,lT(t) decreases as well, a
though not necessarily as Re21/2, where Re is the Reynold
number. Then, for fixedt and increasing Reynolds numb
we should observe a decreasing effect of drag reduction
observed in our numerical simulation. The same reason
can be applied to get information for small Reynolds nu
bers, as the following argument shows. Fort→0 we have
already shown that no drag reduction is possible simply
causekc→`. This is equivalent to saying that whenm be-
comes too large there cannot be any drag reduction. It
lows that for small Re, i.e., for largelT , drag reduction
disappears.

VII. CONCLUSIONS AND DISCUSSION

In this paper we discussed several points concerning
possible formulation of a theory for drag reduction in a tu
bulent flow with a dilute polymer. It is worthwhile, therefore
to review the following main points.

~a! We have introduced a shell model resembling the
namical properties of the FENE-P equations. Besides
theoretical considerations, the model shows drag reductio
a way close to what is already observed in the numer
simulations of the FENE-P. The implications of this result
that one need not focus on boundary effects or dynam
properties of coherent structure in order to capture the b
physics of drag reduction.

~b! There exists a relevant scale in the system,kc defined
M.

n

01630
nd
r.

er

as
g
-

-

l-

e
-

-
y
in
al

al
ic

by the so called ‘‘time criterion,’’ i.e.,u(kc)kc;t21. In the
vicinity of this scale, there is a tilt in the spectrum whic
causes a crossing of the Sabra-P velocity spectrum abov
Sabra spectrum forkn,kc . This in its turn means an in
crease in the kinetic energy at large scales. Drag reduc
can be physically understood in terms of the energy
changes between the velocity field and the polymer field
kn;kc . We have succeeded in proposing a coherent pict
based on the equation of motions, for the dynamics whic
in close agreement with the numerical results.

~c! Drag reduction is a property of large scale flow and
dynamics. This implies that a quantitative description of dr
reduction must depend on the details of the flow, the forc
mechanism, as well as the Reynolds numbers. Althoug
general qualitative mechanism should occur in all drag
duction flows, the amount of drag reduction itself depends
how much energy isintermittentlygiven to large scale veloc
ity. Thus, large scale fluctuations are important for a qua
tative theory.

~d! Drag reduction by no means could be reduced to
dynamics at the dissipation scale. Although drag reduct
could be Reynolds dependent, drag reduction cannot be
duced to a simple increase of the dissipation length. Actua
the dissipation scale does not seem to be affected by
reduction.
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