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Shell model for drag reduction with polymer additives in homogeneous turbulence
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Recent direct numerical simulations of the finite-extensibility nonlinear elastic dumbbell model with the
Peterlin approximation of non-Newtonian hydrodynamics revealed that the phenomenon of drag reduction by
polymer additives exist&lbeit in reduced formalso in homogeneous turbulence. We use here a simple shell
model for homogeneous viscoelastic flows, which recaptures the essential observations of the full simulations.
The simplicity of the shell model allows us to offer a transparent explanation of the main observations. It is
shown that the mechanism for drag reduction operates mainly on large scales. Understanding the mechanism
allows us to predict how the amount of drag reduction depends on the various parameters in the model. The
main conclusion is that drag reduction is not a universal phenomenon; it peaks in a window of parameters such
as the Reynolds number and the relaxation rate of the polymer.
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[. INTRODUCTION ploited in Sec. Il. The shell model for viscoelastic flow is
introduced and discussed in Sec. lll. In Sec. IV, we present

The phenomenon of drag reduction by polymer additivegiumerical simulations of the shell model and demonstrate
is usually studied in channels or pipes, where the boundarthe existence of drag reduction. In Sec. V, we present the
conditions and the effects of the walls are very importantnechanism of drag reduction. This is the central section of
[1—4]. Until recently, it was not known whether drag reduc- this paper. We show that drag reduction is not a universal
tion could be achieved also in homogeneous flows; this quegthenomenon. Rather, it depends on parameters such as the
tion has been answered recently in the affirmative, via direcReynolds number and the relaxation time of the polymer.
numerical simulationgDNS) of the finite-extensibility non- The amount of drag reduction peaks in a window of these
linear elastic dumbbell model with the Peterlin approxima-parameters. In Sec. VI, we demonstrate that understanding
tion (FENE-P equations[5,6] in homogeneous conditions the mechanism provides us with a predictive power that we
(i.e., in a box with periodic boundary conditiong7]. The  can test against numerical simulations. We conclude in Sec.
FENE-P takes into account the effect of the polymers on th&/Il by observing that precisely because drag reduction is not
Newtonian fluid by introducing the conformation tengoof & universal phenomenon it can be manipulated by optimizing
the polymers into the fluid stress tend&®]. The FENE-P  parameters.
equations are known to model well the effects of polymers
on the hydrodynamic flows, and DNS of these equa’;io_ns iN'" || THE FENE-P EQUATIONS AND THEIR RELATION
channel geometry recaptured very well the characteristics of TO MHD
drag reduction in experimental channel turbulept8]. The
observation of drag reduction in homogeneous conditions of- The addition of a dilute polymer to a Newtonian fluid
fers an opportunity to investigate the phenomenon indepergives rise to an extra stress tensb(r,t) which affects the
dent of boundary layers and wall effects. Nevertheless, th&lavier-Stokes equatiori$,6]

FENE-P equations are relatively cumbersome to analyze

without the help of DNS. The aim of this paper is to intro- au

duce a shell model of the homogeneous FENE-P equations. 5 T(u-V)u=—Vp+ vV2Uu+V.- T,

We will demonstrate that the shell model recaptures the main

findings of the homogeneous DNS, and that these findings

are understandable analytically, taking advantage of the rela- V-u=0. )
tive simplicity of the shell model. To derive the shell model

for drag reduction we make use of a formal analogy betweetere, u(r,t) is the solenoidal velocity fieldp(r,t) is the
the FENE-P equations for viscoelastic flows and magnetohypressure, and; is the viscosity of the neat fluid. In the
drodynamic§¥MHD) [10]. It had been pointed out that if we FENE-P, the additional stress tensbiis determined by the
form a tensorR; ; from the direct product of the magnetic “polymer conformation tensorR according to

field B;, i.e., R; j=B;B;, then the nonlinear couplings of

MHD lead to equations for the tens®&® whose nonlinear vo | £(r,0)
terms are equivalent to those of FENE-P, up to terms that T(r,t)= L —’ZR(r,t)—l ; 2
remove the dynamo effect. This analogy is revisited and ex- L po
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Here 1 is the unit tensory, is a viscosity parameter, is a  for it. Rather than doing it directly with the FENE-P, we
relaxation time for the polymer conformation tensor, agd would present first a simplified model. We have already
is a parameter which in the derivation of the model stands foshown before that drag reduction appears in simplified mod-
the rms extension of the polymers in equilibrium. The func-els such as the Burgers equat[d2]. Here, we derive a shell
tion f(r,t) limits the growth of the trace dR to a maximum  model for the FENE-P equations. The advantage of the shell

valuep,: model is that it is much more tractable analytically than the
full FENE-P equations. We will present the model, demon-
p2—p strate explicitly that it exhibits drag reduction in much the
frit)=—>—""7"-. (3 same way as the FENE-P equations, and finally offer a dif-
Pm™— Ryy(rvt)

ferent mechanism to understand the phenomenon.
The model is closed by the equation of motion for the con-

formation tensor which reads ll. THE SHELL MODEL
B N au, To derive a shell model of the homogeneous FENE-P
p +(u~V)Raﬁ=ﬁTRyﬁ+Ra7&T equations(without boundaries we proceed in two steps.
Y B

First, we recall a recent remaf0] that the FENE-P equa-

1 ) tions can be recaptured almost entirely by taking the confor-
- ;[f(f,t)Raﬁ—Po5ap]- (4 mation tensor to be a diadic direct product of a ve&p.e.,
Rij=B;B;. In terms of this vector, the equations read

This model was simulated by DNS in channel flow turbu- 5

lence, showing a qualitative and quantitative agreement with u _ 2
laboratory experiments on drag reduction. Recently, the same at +(U-V)u=-=Vp+B-(VB)+rV-u,
model has been used to understand whether or not drag re-

duction is observed in homogeneous and isotropic conditions V.u=0,
[7]. In homogeneous and isotropic turbulence, drag reduction
can be determined by computing the ratio B B
—+(u-V)B=——+B-(Vu),
el at T

D=—, 5
E3?2 © V.B=0. (6)

whereE is the kinetic energye is the total rate of energy These equations are identical to the FENE-P up to the ex-
dissipation, and. is the scale of the external forcing. The pjicit appearance of the functiof(r,t). The learned reader
above expression of drag reduction can be easily reduced i course recognizes that for— these equations are iso-
the so called skin friction factor for turbulent channel flows. morphous to MHD. We can therefore write immediately, by
The numerical simulation of homogeneous and isotropic turinspection, a shell model for FENE-P by using the well stud-
bulence were performed in a cube with periodic boundaryeq shell model for the MHI{13,14), including the relax-
conditions. The external forcing was applied with randomation term for finiter. We denote the velocity field by and
phase in order to ensure isotropy and homogeneity. The Nyne “polymer ” field by B. The dynamical variable of the
merical simulations were performed for the Navier-Stokessne|l model are the field at wave vectqy, denoted, respec-
equations and the FENE-P for tlemmeexternal forcing. yely, as u,=u(k,) and B,=B(k,). The shell model re-

Both the total energy dissipation and the kinetic energy iN<stricts attention to wavevectoks = k,\", where typically in
creased for the FENE-P as compared to the Newtonian casg,merical simulations = 2.

A direct computation oD shows that there is a drag reduc- |5 order to derive the shell model equation, we consider
tion of about 20%, i.e., roughly of the same order as what,e following nonlinear operator:

had been observed in the turbulent channel flow. Also, in

homogeneous and isotropic turbulence, the Taylor microscale D (U,B)=b1Knlpns oB% = b1Kn_1Uns1BY

appeared to increase, precisely as much as the buffer layers

increases in channel flowd]. This is an interesting result +c1kpUh . 1BnyotCiky oUn 1B, >
because it shows us that the effect of boundary conditions is .
not crucial for drag reduction, at least from a physical point +bekn-1Bn+ iUy 1+ DKy oUn—2Bn-1, (7)

of view. Nevertheless, it is still difficult to understand from
numerical simulations, even in the homogeneous and isotrg¥hereb;=1-Db; ¢;=1+¢; b;=b+c; and —1<b<0 and
pic case, that what is the physical mechanism that is respof¢-=1+b are the usual parameters defined in the Sabra
sible for drag reduction. The increase of the Taylor micros/nodel.
cale is certainly not enough to explain quantitatively the In terms of the nonlinear operateb, the Sabra shell
increase of the kinetic energy, as somehow previously sughodel of turbulenc¢15] can be written as
gested in the literaturgl,11]. )
Having understood that the homogeneous simulations ex- % _ '_q) (u,u)— vk2u, + f ®)
hibit drag reduction, we would like to propose a mechanism dt. 3™ ™7 nen o
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wheref , is an external forcing and the kinematic viscosity 011 p
of the model. Let us remark that the following relation can [
be proved: 0.1 |

> ©,(uB)BE-iS BF(UB)B=0.  (9) 009 f

Using the nonlinear operatdp, it is possible to model Egs. M 008 ¢

(6) in the framework of shell models, namely,

0.07 |
dn_1g | &,(B.B)— vkCu+f :
dt 3 n(U,U) 3 n(B,B)—v nUrTh, 0.06 :_
dBy i o i m 1o 10 P T T S T
qi ~ 3 Pn(u.B) =3 ®n(B,u)— —B,. (10) 0.2 04 06 0.8 1
Equation(9) shows us that the generalized enekyy FIG. 1. Kinetic energy of the Sabra-P model fo=10"° as a
function of . The constant reference line corresponds to the kinetic
E=E,*Es, energy computed for the Sabra model without polymer.
_ _ from Eqgs.(10) in the limit 7— 0. Alternatively, we can get
E,=2, uu’, Ezg=2, B,B! 11 . ! . 2.
! ; nen B ; nen (1) the Sabra dynamics by simply taking as initial conditions
B,=0.
is conserved in the inviscid limit, i.e., far—c and»—0. To have a meaningful comparison we always drive the

We will refer to this model as the Sabra-P model. Besideswo models with a constant power input. In other words, we
the generalized energlf, the model conserves the “cross choose
helicity” in the inviscid limit
fi= 2 =00 § 20 forn=2 1
K=2 Re(u}B,). (12 1T 2Ty m0forn=2 47

n

In MHD one needs to worry about the existence of awith F,=F,=10 3(2+2i). Since the power input is the
dynamo effect, i.e., an unbounded increase in the magnetigame, drag reduction is exhibited in Eq$0) if the kinetic
field. In our case, the term that models the polymer relaxenergy of the flow increases. The latter is simply,). We
ation time —B,,/7 will be responsible for guaranteeing sta- will investigate the existence of drag reduction, its depen-
tionary statistics without dynamo. In addition to the conser-dence on parameters, the question of the dissipative scale,
vation laws, the equations of motion remain invariant to theand the dynamical signatures of drag reduction.
phase transformations u,—u.exp(¢, and B,

—Bnexp(#n). The conditions are A. Drag reduction and its dependence on parameters

Gt i1 dnr2=0, (13 We have numerically investigated the behavior of the
Sabra-P model for different values ofand ». In Figs. 1-3

bt Pni1— Une2=0, (14)  we show(E,) for three values of viscosity and for different
values ofr. For concreteness, we have fixed the model pa-

Unt dpi1— Unso=0, (15 rameterb as — 0.4 in all the simulations. In all the figures,
the constant line corresponds to the value of the kinetic en-

Ynt ni1— n2=0. (16)  ergy computed for the Sabra model without couplindta

o By inspecting the three figures, one can safely state that the
This implies ¢,= ¢, V n. As a result of the phase con- sapra-P model shows drag reduction. In particular, for all
straints, there exist in this model only few nonzero correlacases; there is an optimal choiceofor which the effect of
tion functions. The only second-order quantities dug,|?) drag reduction is maximal. Far—0 andr—c, drag reduc-
and(|B,|?). The only third-order quanitites are of the form tjon decreases and eventually we enter a region of param-

Im(Bn-1B8nBn+1), Wheres can beu or B. eters where we observe drag enhancement. Moreover, for
fixed value ofr and decreasing values of drag reduction
IV. NUMERICAL INVESTIGATION OF THE SHELL decreases, reaching a mere few percentferl0 8.

MODEL: DRAG REDUCTION

_ _ ' . , -
In this section we compare the solutions of the shell B. Which scales are responsible for drag reduction?

model (10) to the usual Sabra shell model for the corre- To understand that which scales are responsible for the
sponding Newtonian flow. The Sabra mod8) is obtained drag reduction, we compaxgu,|?) for both models withw
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FIG. 2. Kinetic energy of the Sabra-P model fior-10"° as a FIG. 4. A double logarithmicto base 2 comparison of the
function of 7. The constant reference line corresponds to the kineticaverage energy shell by shell for the Safutatted line with circles
energy computed for the Sabra model without polymer. and the Sabra-Rontinuous line with squargsodels. Drag reduc-

tion seen is the relative increase in energy for small valugs @f

—10°5, again at the same power input. This is shown in Fig.(ne expense of large values of

4. This figure shows us an interesting and important point. It

is clear that the drag reduction is due to the relative increasBetween the Sabra and the Sabra-P models, even though the
in (Ju,|?) for small values of nand that this occurs at the latter certainly exhl_b|ts drag reduction. Thus, as indicated
expense of a relative decreas fin,|2) for high values of. before, drag reduction sho_uld be understood as a ph'enpm-
This finding is in close correspondence with similar conclu-enon of the energy containing scales rather than the dissipa-
sions obtained for the FENE-P, both in homogeneous aniVe scales.

channel flowd16].
D. Dynamical signature of drag reduction

C. The dissipative scale The similarity between the FENE-P and its shell analog

In some theories of drag reduction, it was proposed thafranscends statistical quantities. To observe the close dy-
the dissipative scale is increased in the viscoelastic flow, angamical similarity it is instructive to consider the quantity
that somehow this is responsible for the phenomenon . * . %

[1,11,17. To test this possibility we plot in Fig. 5 the quan- I=iZqup ©n(B,B) ~iZu, P (B,B), (18)
tity (k%|upy|?) as a function of. This quantity peaks at the _ _ o
dissipative scale, i.e., the Kolmogorov scale. Inspecting FigWhich describes the exchange between the kinetic ertgygy

5 shows us that the dissipative scale has not changed at &Nd the polymer or elastic energy . In Fig. 6 we show a
time series oflI for v=107°. II is always negative; the
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FIG. 3. Kinetic energy of the Sabra-P model with polymer for

v=10"8 as a function of~. The constant reference line corresponds  FIG. 5. Energy dissipation displayed in double logaritmic plot
to the kinetic energy computed for the Sabra model without poly-for each shell for the Sabra modglotted line with circlesand for
mer. the Sabra-P modétontinuous line with squargs
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FIG. 6. Time behavior of the quantify as defined in the text.

FIG. 7. Double logarithmic plofto base 2 of the energy spec-
effect of the polymers is to drain energy from the kinetic trum of the Sabra-P modétontinuous line with squargsind the
energy. Moreover, the dynamics ofF is strong|y intermit- Sabra mode(continuous line with circlesfor v=10"%. The con-
tent, which is a feature already observed in the DNS of thdinuous line with black triangles represents the energy spectrum of
FENE-P. The numerical simulations indicate the conclusiorihe B field.
that the model used in this paper shows drag reduction in a
way qualitatively close to the observed behavior of the S [(uput)s— (upul)spl <O. (22
FENE-P[9].

We note in passing that it is not the first time that shellThe only way Eqs(21) and(22) can hold simultaneously is
models seem to reproduce many of the features of turbulenf for small k,, |u,|sp>|u,|s, and sufficiently larger to com-
flows; it is gratlfylng however that we can present a Similarpensate for the fact that at |arge“ |un|SP<|un|S- This
success even when we include relatively nontrivial effectsneans that the kinetic energy plotted verkusas to display

induced by polymer dynamics. an increased slopat least somewherfr drag reduction to
take place. We have seen this already in Fig. 4. We show this
V. MECHANISM FOR DRAG REDUCTION important phenomenon once more in a log-log plot in Fig. 7,

in which also theB,-spectrum is shown for future reference.
e see very clearly the crossing that occurs betweemthe
ectrum of the Sabra-P model and the Sabra counterpart,
hich is the necessary condition for drag reduction. Note
that the increase in slope is a necessary but not a sufficient
condition for drag reduction. We may increase the slope but
A. Necessary condition for drag reduction not enough to cross the Sabra spectrum, or cross but not far
To derive a necessary condition for drag reduction, let u€nough to compensate for the reduced kinetic energy at large
consider the equation for the total energy, which reads k.

This is the central section of this paper, in which we pro-
pose a detailed mechanism for drag reduction in the presen
model. We begin by analyzing the necessary conditions fo&v
drag reduction.

1 1 .
dE/dt= ; [E(fnu: +f*un)— vkﬁunu: — ;BnB: B. Typical scales related to the polymer

(19 A discussion of the mechanism of drag reduction calls for
pointing out the existence of two typical scales that were
At steady state, with power input maintained constarf,at already introduced in the past in the literature on drag reduc-
we have tion. The first is the Lumley scale., which is defined by the
relaxation time of the polymer being of the same order as the

P eddy turnover time. For our model this scale satisfies
= <n

1
vk2u,uk + ;BHB;}. (20)
u(ko)ke~71. (23

All the terms on the right-hand sid®HS) are strictly posi- L . ) .
tive. Since the energy inp®R is constant for the Sabra and Note that by definition this scale is Reynolds number inde-

the Sabra-RSP models, we get pendent. _
The other scale, which we refer to as the de Gennes scale
3 K2 (UpUX ) s— (Upu* ) sp]>0. (21) kg, is where the kinetic energy on the schlgis of the same

order as the elastic energy:

On the other hand, if the SP model is to be drag reducing, we
must have u?(Kg)~B?(Kyg). (24)
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FIG. 8. Double logarithmic plotto base 2 of the inverse of the FIG. 9. Double logarithmic plofto base 2 of G, computed for
“eddy turnover time” \(E )k, as a function ok, (continuous line the Sabra-P modelcontinuous line with squargsand the Sabra
with squares The constant reference dotted linerist. The cross- ~Model(dotted lines with circles
ing in inertial range identified . In this figure,y=10"5, r=0.4.

all, in agreement with our assertion that it is Reynolds inde-
In fact, in the Sabra-P model the scales so defined appear gendent. Finally, we note that in all the figures sholgnand
be very close, if not identical to each other. In particular, wekq are of the same order of magnitude, and in the sequel we
will show presently that alsé, is Reynolds number inde- do not distinguish between the two.
pendent. To demonstrate the equivalence of the two scales
we first exhibit in Fig. 8 the numerical estimate lkof. The C. The effect of the polymer at largek-vectors
physical significance df. is not in the accidental identity of
the two time scales, but rather that fovectors smaller than
k. the effect of theB,, field on the energy flux is negligible,
but not so fork vectors larger thak. . To see this, introduce
the quantities related to the energy flux in the Sabra-P mod

In this section and the following one, we discuss the effect
of the B, field on theu, field for k vectors much larger and
much smaller thark.. We will show that the spectrum

egu“|2> exhibits essentially the same scaling exponent as the
abra model, but themplitudeis affected by the presence of

namely, the B, field. This will be an important factor in the mecha-
S,=(Im(u*_u*unq)), (25) nism of drag reduction. Begin v_vithn_ large, k,>K.. In_this
regime, the effect of the relaxation timeon the dynamics of
To=(IM(B*_U*By.1)). (26) the B, field is completely negligible. The dynamics Bf, is

dominated by its coupling ta,, simply becauseu,k,
The physical meaning of the two quantities is rather clear™7 - But then in this regime the dynamics is like the one
k.S, is proportional to the flux of the kinetic energy from Of MHD, which had been analyzed in detail in REf4]. The
large scale to small scales due to nonlinear terms, vikyilg

is proportional to the flux of kinetic energy to the polymer SF
field. We expect that fok, neark., the effect ofT,, cannot 10 F
be neglected in the dynamics, i.e., the average energy flux for C
the velocity field A B F
a 20 F
KnGn=kn(S,—Tn) (27 o s
v BE
begins to change with respect to what it is observed in the N a0k
Sabra model. = -
In Fig. 9 we show the quantit§s,, computed for the same 5 35 F
model parameters of Fig. 8. The symbols refer to the Sabra w0k
model, while the continuous line corresponds to the Sabra-P -
model. In the vicinity ofn,~5.5, the two models show a 45 F
different behavior and, in particular, the Sabra-P model 50 Bt
shows a decrease of the total energy fkpG,, as previ- 0 2 4 6 8 nlo 12 14 16 18

ously claimed.

Regarding the scalk, it can be read from the spectrum  FIG. 10. Double logarithmic plotto base 2of the energy spec-
shown in Fig. 7, in whichv=10"°. In Fig. 10 we show the trum of the Sabra-P modétontinuous line with squargsThe line
analogous spectra for=10"8. Clearly, kg did not change at  with black triangles represents the energy spectrum otfield.
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Bn
>~<|Clknu:+1Bn+2|>_ <| |>1 (31

Bn

dt

corrections, the spectra of bof, and u,, fields exhibit a

scaling exponent,=2/3. Indeed, inspecting Fig. 10, we see

that for largek,, the two spectra have similar slopes, althoughwhere we have neglected terms of the ordeBgf ;, but

intermittency affects the two spectra in different ways. including them will lead to similar conclusions. Using the
On the other hand, the amplitudes of the two spectra neefct that |k,. Uy, ,7|<1, and since |ky;1Up, 1Bnyol

not be the same. The relative displacement of the two powes |k, iU}, ;||B,,. | we immediately conclude that

laws is determined by numerical details in the model. To

estimate this displacement we will estimate the amplitudes of (IBal)<{|Bn+2l)- (32)

the two spectra at the dissipative scale. The contribution t@ye continue this argument recursively to estimate the largest

the dissipation oti is mainly from the small scales, i.e., very polymer contributiorB(k.) as

large values ok,,. We can define an effective scdlg, the

scale at which energy dissipation peaks: (IB(k)|)~ (|Bol)

(|kqug|)(Ikaus))- - - (|ke_gUc_ 1|y 72’
> K&(|up|?)~K3(|ug|?, 29 -
where\"e=k,.

) In the vicinity of the scal&k., we have, to leading order
whereug=u(ky) andky is of the order of the Kolmogorov in B, in the kinetic energy equation,

scale. Since we found that the dissipative scale hardly
changes when we add the coupling to B field, we can 0=—KnSh+1—bkiSy+(1+b)kn_2Sy-1
deduce from Eq(20) that — K (U*BX, Bys). (34)

central conclusion of that analysis is that up to intermittency < d
,

(B2 When the amplitude of the polymer goes to zem, (

(ugl®sp—{|uglPe~ > L. (299 —0V n) the only solution is the well known scaling law
n VT Sk, . However, the last term in E§34) forces now a tilt

in the spectrum. Its sign is exactly such tf&t ; has to

. increase compared 8§, andS,, 1, respectively. Of course,

On the other hand, the sum on the RHS of E2H) is a for k,<<k. the effect of theB, field on theu spectrum is

geometric sum dominated by t_he contrlbut|o_n (l_(c)' again negligible and therefore, the spectral slope will settle
whereB, is maximal. We thus estimate the relative displace-pacy to the Sabra value. However if the tilt in the vicinity of

ment of the two spectra at high valuesigfby k. results in crossing the Sabra spectrum, we would have a
whole spectral range where the energy is higher.
(|B(ko)|?) We therefore conclude that the existence of drag reduction
(ug®sp—(lugl)s~ ———~L. (300  depends rather heavily on the sign of the energy transfer at
vT scales close t&; . To check the sign directly in the numerics

and thus to substantiate the existence of the tilt, we return to

Thus to the first approximation, we expect the slopes of théhe equations of motion and write

two spectra to remain unchanged, maintained at a constant ¢ , o
difference from each other as given by EG0), until k, a|un| =w{"(u,u,u)— ¥ (u,B,B)— vki|u,l?,
approacheg,; from above, where the effect of the relaxation

time 7 on the dynamics oB,, cannot be neglected. d 1
/Bnl?=¥§(u,B,B)+ WV (u,B,B)~ ~[By[%, (39
D. The effect of the polymer at smallk vectors where the term¥{"(u,u,u) represents the kinetic energy
Next, we discuss the slope of the, spectrum fork,  flux of the field, While\lf(zn)(u,B,B) is the energy flux going
<k.. This is very easy, since the amplitude Bf is very  from the velocity field to the polymer field. Finally, term
small due to the very efficient exponential damping by \P(gn)(u,B,B) is the flux of energy of the polymer field due to
Thus, theu,, field hardly experiences the couplingBq, and  the transport of the velocity field. Figure 11 shoﬂ&ﬁ”),
its slope, up to intermittency corrections, is again of the or-—Ww{"  and¥{" for r=0.4 andv=1C°, the same param-
der of {,=2/3. Again, the amplitude is changed compared toeters of Fig. 7. It is important to observe thif" becomes
the pure Sabra case, and this is the most important featuigsitive for n>n.. For a givenn, the termW¥{" can be
that is discussed next. written asW{V=L,—S,, whereL, is the amount of energy
flux given from the large scale to scalg and S, is the
E. The tilt in the spectrum at k =k, amount of energy flux given from scaltg to smaller scales.
Considering the spectrum in Fig. 10 we note thatBhe It follows that when the energy flux is constahbt,= S, and,
spectrum increases rapidly whén—k, from the left. To  therefore{”(n)=0. On the other hand, a positive value of
understand this phenomenon consider the equation of motio‘ﬂ(l”)(n) implies thatL,,>S,,. This is exactly what is shown
for B, at steady state. To leading order in Fig. 11. The imbalance of the energy flﬂéél”) is compen-
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FIG. 11. Energy fluxes for the Sabra-P model. The continuous F!C- 12. Probability distribution functions a&/,_ for the Sabra
line corresponds to the fluxes of the kinetic enew). The model the(line with black trianglesand Sabra-P modétontinuous

squares correspond teW{" . The dashed line with black triangles 'N®)-

is wiY. Clearly, this mechanism could not work unless the “forc-

. ing” by the polymer field acted in phase with the growing
sate(ci)by the flux of energy from, to B,,, given by the term  yinatic energy. In order to clarify this further, we present two
-V, Itis mterestmg to(g)b;erve that the I'ast term in thetime-series of the kinetic energy aid, , in Fig. 13 for the
balance equation, nameN/3" is rather small, i.e., the effect Sabra model and in Fig. 14 for the Sabra-P model. A close

of an energy cascade of the polymer is rather weak. inspection of the figures shows that the reverse of the energy
flux W, occurs exactly during the growing phase of the ki-
E. Discussion netic energy, leading therefore to a larger value of the instan-

hil h b bl ¢ d i .. taneous kinetic energy. Thia phasemechanism is respon-
While we have been able so far to describe a convincingine for drag reduction. Note that this mechanism strongly
scenario for drag reductlon, we still should explain thedepends on the large scale dynamics and the valig.dFor
mechanism for the increase of the large scale energy. Singe '|arger thank,, no significant difference in the statistical
the fieldB), is negligible for smalh, the average energy flux pehavior of the energy flux is observed. However, the
per unit time at smalh must equal the input work per unit amount of energy forcing, due to the polymer at large scale,
time at the largest scales. However, the energy flux doegan depend on the Reynolds number, at least in the Sabra-P
show time and scale fluctuations which could behave differmggel. If this is the case, then drag reduction should depend
ently for the Sabra and Sabra-P models. More specifically, legn the Reynolds number only through the two relevant scales

discussed, represents the energy flux at scaledue to  the Taylor microscale

both the nonlinear terms in the velocity fiedahd the nonlin-

ear term in theB,, field. In terms ofG,,, we can build a large

scale energy fludWW_ =G,+G3;+ G, which represents the A=
full amount of energy flux across the largest scales, namely,
acrosk vectorsk,<k., for which the average energy flux is
invariant to the changing of Sabra to Sabra-P. The definition
of W, is such thatW, >0 means an energy flux from large i
scales to small scales. In Fig. 12, we show the probability 0.15F
distribution of W, for both models, with numerical param- E
etersy=10"° and 7=0.4. The vertical line in the figure
indicates the average value, which, as expected, is invariant.
As one can observe, the two probability distributions show a
substantial difference fonegative values of W, : in the
Sabra-P model, one can have larger and more frequent nega-
tive values of the energy flux. This can happen even if the
instantaneous value of the total energy per unit time obtained
by the polymer field from the velocity field is always posi-
tive. Qualitatively, this means that while the velocity field is E
always forcing the polymer field, at very large scales the flux 900 950 10t00 1050 1100
can, from time to time, be reversed, and the polymer field

forces the velocity there. This is how the amplitude of the FIG. 13. Time series of the kinetic ener¢yontinuous ling and
energy spectrum is being increased on an average. 2W, (dotted ling for the Sabra model.

(36)
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FIG. 14. Time series of the kinetic ener@yontinuous ling and

2W,_ (dotted ling for the Sabra-P model. FIG. 16. Double logarithmic schematic of the turbulence energy
spectrum when the polymer relaxation time scale is too slow, and

which also depends onin the Sabra-P model. Because the the Reynolds number is too large.
drag is a dimensionless quantity, we argue that the only way
in which the Reynolds number may appear in the drag re- The difference in the spectra fd,>k. is determined
duction is by means of the dimensionless quantity predominantly by Eq(29). This equation predicts that this
=K A7(7). difference will be greatly increased when the Reynolds num-

There is a simple argument, proposed in the followingber is increased.e., whenv—0), see Fig. 16. Of course, if
section, which explains why at large Reynolds numbers onéhis happens we can lose the whole effect of the drag reduc-
may observe the same qualitative mechanism, i.e. drag réion, since the amount of tilt &; is basically independent of
duction, with smaller effects on the kinetic energy. As a mat-v. We need to maintain the spectral difference small enough
ter of fact, the numerical results show that drag reductiorfor the tilt to effect a crossing of the spectrum of Sabra-P and
reaches its maximum fqe~1 Sabra. Also, the position & is important. If we reducé
(i.e., increaser) the tilt is too far to the left and therefore it
will fail to increase the energy. In fact, it can be drag enhanc-
ing. The combined effect of decreasingand increasing is

We summarize the mechanism of drag reduction using thehown in Fig. 16. Needless to say, also if we decreag®m
diagram shown in Fig. 15. The tilt in the spectrum occurs inmuch we may lose drag reduction since the tilt will be
the vicinity of k., with the asymptotic slope fdt,<k. and  pushed to the irrelevant dissipative range where no energy
k,>k. remaining essentially unchanged. With such a speceontaining modes exist. Also, if becomes too low,, be-
trum, the two inequalities(21) and (22) are obviously comes smaller, and the amount of tilt is decreased, as can be
obeyed. seen directly from Eq(34). Although decreasing the fieB,
brings the spectra closer together in the lakgeegime, the
tilt may not suffice to reduce the drag. Such a situation is
shown schematically in Fig. 17. Actually, using the language
introduced in the preceding section and the above discus-

VI. PREDICTIONS OF THE THEORETICAL MECHANISM

2
ol >

<|u

Nl\
=
v
kll
FIG. 15. Double-logarithmic schematic of the effect of polymers
in the drag reduction on the turbulence energy spectrum. Dotted
line: neat fluid. Solid line: polymeric solution. The spectral slope is K,
unchanged for large and small scales, while at skalthere is a
significant upward tilt. FIG. 17. The relaxation time is to low.
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sions, we are able to give another argument to understarisly the so called “time criterion,” i.e.u(ko)ke~7"1. In the
how drag reduction could depend on the Reynolds numbewicinity of this scale, there is a tilt in the spectrum which
As previously mentioned, the relevant dimensionless numberauses a crossing of the Sabra-P velocity spectrum above the
in the system igt=K\ 1. If 7—o thenk.—0 and we know Sabra spectrum fok,<k.. This in its turn means an in-
that drag reduction must be inhibited. It follows that f@er  crease in the kinetic energy at large scales. Drag reduction
—0 we cannot observe drag reduction. For fidedand can be physically understood in terms of the energy ex-
increasing Reynolds numbex(7) decreases as well, al- changes between the velocity field and the polymer field for
though not necessarily as R¥, where Re is the Reynolds k,~k.. We have succeeded in proposing a coherent picture,
number. Then, for fixed- and increasing Reynolds number based on the equation of motions, for the dynamics which is
we should observe a decreasing effect of drag reduction, ds close agreement with the numerical results.

observed in our numerical simulation. The same reasoning (c) Drag reduction is a property of large scale flow and its
can be applied to get information for small Reynolds num-dynamics. This implies that a quantitative description of drag

bers, as the following argument shows. Fer0 we have

reduction must depend on the details of the flow, the forcing

already shown that no drag reduction is possible simply bemechanism, as well as the Reynolds numbers. Although a

causek.—o. This is equivalent to saying that when be-

general qualitative mechanism should occur in all drag re-

comes too large there cannot be any drag reduction. It folduction flows, the amount of drag reduction itself depends on

lows that for small Re, i.e., for larg&;, drag reduction
disappears.

VII. CONCLUSIONS AND DISCUSSION

how much energy imtermittentlygiven to large scale veloc-
ity. Thus, large scale fluctuations are important for a quanti-

tative theory.

(d) Drag reduction by no means could be reduced to the

) ) _ _ dynamics at the dissipation scale. Although drag reduction
In this paper we discussed several points concerning thgould be Reynolds dependent, drag reduction cannot be re-
possible formulation of a theory for drag reduction in a tur-duced to a simple increase of the dissipation length. Actually,

bulent flow with a dilute polymer. It is worthwhile, therefore, the dissipation scale does not seem to be affected by drag
to review the following main points. reduction.

(a) We have introduced a shell model resembling the dy-
namical properties of the FENE-P equations. Besides any
theoretical considerations, the model shows drag reduction in
a way close to what is already observed in the numerical We thank Carlo Casciola, Victor L'vov, and Renzo Piva
simulations of the FENE-P. The implications of this result isfor many useful discussions. This work has been supported
that one need not focus on boundary effects or dynamicah part by the European Commission under a TMR grant
properties of coherent structure in order to capture the basitNon-ideal Turbulence” and The Minerva Foundation, Mu-
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